首页> 外文OA文献 >Theory of sorption hysteresis in nanoporous solids: Part I Snap-through instabilities
【2h】

Theory of sorption hysteresis in nanoporous solids: Part I Snap-through instabilities

机译:纳米多孔固体中吸附滞后理论:第一部分穿透不稳定性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The sorption–desorption hysteresis observed in many nanoporous solids, at vapor pressures low enough for the liquid (capillary) phase of the adsorbate to be absent, has long been vaguely attributed to some sort of ‘pore collapse’. However, the pore collapse has never been documented experimentally and explained mathematically. The present work takes an analytical approach to account for discrete molecular forces in the nanopore fluid and proposes two related mechanisms that can explain the hysteresis at low vapor pressure without assuming any pore collapse nor partial damage to the nanopore structure. The first mechanism, presented in Part I, consists of a series of snap-through instabilities during the filling or emptying of non-uniform nanopores or nanoscale asperities. The instabilities are caused by non-uniqueness in the misfit disjoining pressures engendered by a difference between the nanopore width and an integer multiple of the thickness of a monomolecular adsorption layer. The wider the pore, the weaker the mechanism, and it ceases to operate for pores wider than about 3 nm. The second mechanism, presented in Part II, consists of molecular coalescence, or capillary condensation, within a partially filled surface, nanopore or nanopore network. This general thermodynamic instability is driven by attractive intermolecular forces within the adsorbate and forms the basis for developing a unified theory of both mechanisms. The ultimate goals of the theory are to predict the fluid transport in nanoporous solids from microscopic first principles, determine the pore size distribution and internal surface area from sorption tests, and provide a way to calculate the disjoining pressures in filled nanopores, which play an important role in the theory of creep and shrinkage.
机译:在许多纳米多孔固体中,在足够低的蒸气压下不存在被吸附物的液相(毛细管)的情况下,观察到吸附-解吸滞后,长期以来一直被模糊地归因于某种“孔塌陷”。但是,孔坍塌从未得到过实验证明和数学解释。本工作采用一种分析方法来解释纳米孔流体中的离散分子力,并提出了两种相关的机理,它们可以解释低蒸汽压下的磁滞现象,而无需假设任何孔塌陷或对纳米孔结构的部分破坏。第一部分中介绍的第一种机制包括在填充或排空不均匀的纳米孔或纳米级凹凸不平时发生的一系列卡扣不稳定性。这种不稳定性是由纳米孔宽度和单分子吸附层厚度的整数倍之间的差引起的失配解体压力的不唯一性引起的。孔越宽,机理越弱,并且对于宽于约3 nm的孔将停止工作。第二部分中介绍的第二种机制包括在部分填充的表面,纳米孔或纳米孔网络内的分子聚结或毛细管缩合。这种普遍的热力学不稳定性是由被吸附物内的分子间吸引力所驱动的,并形成了开发两种机理的统一理论的基础。该理论的最终目标是根据微观的第一原理来预测纳米多孔固体中的流体传输,通过吸附测试确定孔径分布和内表面积,并提供一种计算填充纳米孔中的分离压力的方法,而分离压力在其中起着重要的作用。在蠕变和收缩理论中的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号